Technology Roadmap July 2011 PhysPAG Technology SAG * [Draft - 07/25/11] ## Decadal Survey 2010 (New Worlds New Horizons) ## Near Term Push Technologies ** Long Term Push Technologies ** | | WFIRST | LISA | IXO | Inflation Probe | Fundamental
Physics | Advanced mm-
wave/far-IR Arrays | Next Generation
Hard X-ray Obs. | Soft X-ray and EUV | Next generation X-ray timing | Next generation Medium-energy γ- | Beyond LISA (Big Bang Observer) | | Beyond IXO (Gen-
X) | Next generation γ-ray
Focusing | |------------------------------------|---|--|---|--|---|---|---|--|---|---|--|--|---|--| | Science Summary | Study the nature of
dark energy via BAO,
weak lensing and
SnIa, IR survey,
census of exoplanets
via microlensing | Probe black hole
astrophysics & gravity
signatures from
compact stars,
binaries, and
supermassive black
holes | Conditions of matter
accreting onto black
holes, extreme physics
of neutron stars,
chemical enrichment
of the Universe | Study the Inflationary
Epoch of the Universe
by observing the CMB
B-mode polarization
signal | Precision
measurements of
space-time istoropy
and gravitational
effects | Enhanced sensitivity or
reduced resources for the
Inflation Probe; far-
infrared astrophysics | Hard X-ray (5-600
keV) imaging all sky
survey for BHs | Spectroscopy of million
degree plasmas in
sources and ISM to
study composition | EOS of neutron stars,
black hole oscillations,
and other physics in
extreme environments | Signatures of
nucleosynthesis in
SNR, transients, and
other sources; AGN
and black hole spectra | To directly observe gravitational waves resulting from quantum fluctuations during the inflation of the universe | | Observe the first
SMBH, study growth
and evolutions
SMBHs, study matter
at extreme conditions | Signatures of
nucleosynthesis in SNR,
transients, and other
sources | | Architecture | Single 1.5 M dia.
Telescope, with focal
plane tiled with
HgCdTe (TBD). | Three space craft
constellation, each in
Keplerian orbit. Sub
nm displacement
measured by lasers
(Michelson
interferometer). | Single 2.5 - 3 M
grazing incidence 20 M
focal length X-ray
telescope | High-throughput
cooled mm-wave meter-
class telescope with
large-format
polarization-sensitive
detector arrays | Individual spacecraft
for space-time
measurement and
gravitational effects.
Multiple spacecraft for
precision timing of
interferometric
measurements. | High-sensitivity, large-
format, multi-color focal
planes for mm-wave to far-
infrared imaging,
polarimetry &
spectroscopy | Two wide-field (~130 x
~65deg) coded mask
telescopes. Full sky ea.
~ 95min | Focusing optics with
high resolution
spectrometers based
on advanced gratings | large(>3m^2) pointed
arrays of solid state
devices, with
collimation to isolate
sources | Single platform designs to measure $\gamma -$ ray lines | Four Michelson
interferometers each of
three s/c (~12 s/c
total), ~50,000 km
separation, LISA like | Constellation of at
least 2 cold atom
differential
accelerometers, 10,000
km measurement
baseline | 16 M (50 M**2 grazing
incidence telescope
with 60 M focal length | 2-platform designs to
measure γ-ray lines | | Wavelength | 0.4 to 1.7 um (TBD) | Interferometer λ =
1.064 um - gravity
wave period 10-10,000
sec. | 0.3 to 40 keV | 1 - 10 mm | | 30 um - 10 mm | 5-30 and 10-600keV | 5-500 Angstroms | 2-80 keV | 100 keV - 30 MeV | visible & near IR:
gravity waves periods
of.~1-10 sec | gravity wave periods
0.01 - 10 Hz | 0.1-10 keV | 100 keV-3 Mev | | Telescopes and
Optical Elements | Wide FOV, ~1.5-M
diameter mirror | Classical optical
design
Surface roughness <
lambda/30,
backscatter/ stray
light | lightweight, replicated
x-ray optics. | High-throughput,
light, low-cost, cold
mm-wave telescope
operating at low
backgrounds; Anti-
reflection coatings;
Folarization
modulating optical
elements | | | Coded aperture
imaging: ~ 5mm thk W
& ~ 2.5mm holes;
~0.5mm W & ~0.2mm
holes | Gratings, single and
multilayer coatings,
nano-laminate optics | No optics; source
isolation by collimator | Compton telescope on single platform | ~ three meter precision optics | ~ one meter precision
optics (I/1000) | Lightweight adjustable
opites to achieve 0.1
arcsec. High resolution
grating spactrometer | Focusing elements (e.g.,
Laue lens) on long boom
or separage platform | | | | Alignment sensing,
Optical truss
interferometer,
Refocus mechanism | | | Coupling of ultra-
stable lasers with high-
finesse optical cavities
for increased stability | Large throughput, cooled
mm-wave to far-infrared
telescope operating at
background limit. | nm-wave to far-infrared
telescope operating at | Actuators | | | LISA Heritage | wavefront sensing with
cold atoms; large area
atom optics | 0.1 arcsec adjustable optic | | | | Classic telescope
structure - HST
heritage | Athermal design with a
Temp gradient
Dimensional stability:
pm/sqrt(Hz) and um
lifetime, angular
stability < 8nrad | lightweight precision
structure | | | | ~ 5" aspect req. over
~6x~3x~1.5m tel.
structures | Arcsecond attitude
control to maintain
resolution | Moderate accuracy
pointing of very large
planar array | | LISA Heritage | 10 W near IR, narrow
line | Extendale optical
bench to achieve 60 M
focal length | Long booms or formation flying | | Detectors & Electronics | HgCdTe CMOS
(H4RG?) | Laser: 10yr life, 2W,
low noise, fast
frequency and power
actuators
Quadrant detector, low
noise, 10yr life, low
noise (amplitude and
timing) ADC's | X-ray calorimeter
central array (-1,000
pixels); 2.5 eV FWHM
@ 6 keV, extended
array; 10 ev FWHM @
6 keV. High rate Si
detector (APS). High
resolution gratings
(transmission or
reflection) | Large format (1,000 -
10,000 pixels) arrays
of CMB polarimeters
with noise below the
CMB photon noise and
excellent control of
systematics | Molecular
clocks/cavities with
10E-15 precision over
orbital period; 10E-17
precision over 1-2
year experiment.
Cooled atomic clocks
with 10E-18 to 10E-19
precision over 1-2 year
experiment. | Very large format (> 10 ⁵ pixels) focal plane arrays with background-limited performance and multicolor capability | 1m^2 Si (-0.2mm
strips)+- 6m^2 CZT
(-1.2mm pixels); ASIC
on ea20x20mm
crystal. photon-
counting over cont.
scan | Photocathodes, micro-
channel plates,
crossed-grid anodes | >3 m^2 Si (or CZT or
CdTe) pixel arrays or
hybrid pixels, with low
power ASIC readouts,
possibly deployable | Cooled Ge; arrays of
Si, CZT or CdTe pixels
and ASIC readouts | Laser interferometer, -
-1kWatt laser, gravity
reference unit (GRU)
with -100x lower noise | Megapixel ccd camera | Gigapixel X-ray active
pixel sensors,
magapixel
microcalorimeter array | Scintillators, cooled Ge | | Coolers &
Thermal Control | Passively cooled
telescope, actively
cooled focalplane? | Low CTE materials,
passive thermal
shielding, power
management for
avionics thermal
stability | Cryocooler needed to
cool detectors and
other parts of
instruments | Passive Spitzer design
plus cooling to 100 mK | Thermal
stability/control, less
than 10E-8 K
variation. | Cooling to 50 - 300 mK | LHP to radiators for -
~30deg (Si) and ~-5deg
(CZT) over large areas | | Passive cooling of pixel arrays | Active cooling of germanium detectors | LISA Heritage | Sun-shield for atom cloud | Cryocooler <100mK
with 1 mK stability
(IXO Heritage) | Active cooling of germanium detectors | | Distributed Space
Craft | | Spacecraft in separate
Keplerian orbits. No
formation flying or
station-keeping. Low
contamination µ-
Newton thrusterswith
low thrust noise | dman.8 and Universe R | | Applicable as precision
timing standard in
distributed
constellations. | | | Use low-cost launch
vehicles for single
payloads with few
month mission
duration | | | ~12 s/c total ~50,000
km separation, sub-
micron position
control. | Multi-platform s/c
system to support
above architecture | | 2-platform formation
flying is one approach | ^{*} Derived and updated from 2005 Strategic Roadmap-8 and Universe Roadmap TRL7-9 TRL 4-6 TRL 1-3 ^{**} Emerging technologies needed for applications in next decade (near-term push) and beyond (long-term push)